This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

2-Substituted 5'-N-Methylcarboxamidoadenosine (MECA) Derivatives as A_o Adenosine Receptor Ligands

S. Vittori^a; R. Volpini^a; C. Lambertucci^a; S. Taffi^a; K. N. Klotz^b; G. Cristalli^a

^a Dip. Scienze Chimiche, Camerino, Italy ^b Institut für Pharmakologie und Toxikologie, Würzburg,
Germany

To cite this Article Vittori, S. , Volpini, R. , Lambertucci, C. , Taffi, S. , Klotz, K. N. and Cristalli, G.(2005) '2-Substituted 5'-N-Methylcarboxamidoadenosine (MECA) Derivatives as ${\rm A_3}$ Adenosine Receptor Ligands', Nucleosides, Nucleotides and Nucleic Acids, 24: 5, 935 — 938

To link to this Article: DOI: 10.1081/NCN-200059296 URL: http://dx.doi.org/10.1081/NCN-200059296

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Nucleosides, Nucleotides, and Nucleic Acids, 24 (5-7):935-938, (2005)

Copyright © Taylor & Francis, Inc. ISSN: 1525-7770 print/ 1532-2335 online DOI: 10.1081/NCN-200059296

2-SUBSTITUTED 5'-N-METHYLCARBOXAMIDOADENOSINE (MECA) DERIVATIVES AS A₃ ADENOSINE RECEPTOR LIGANDS

S. Vittori, R. Volpini, C. Lambertucci, and S. Taffi • Dip. Scienze Chimiche, Camerino, Italy

K. N. Klotz • Institut für Pharmakologie und Toxikologie, Würzburg, Germany

G. Cristalli Dip. Scienze Chimiche, Camerino, Italy

INTRODUCTION

The introduction of various substituents in the 2-position of adenosine (Ado) (1–3, Figure 1) and 5'-N-ethylcarboxamidoadenosine (NECA) led to compounds endowed with high affinity for all the adenosine receptor subtypes (AdoRs). Among them, NECA derivatives bearing a 2-hexynyl, 2-phenylethynyl, and 2-phenylhydroxypropynyl chains in the 2-position (4–6, Figure 1) showed high affinity and different degree of selectivity for human A_3 subtype. In this work we have substituted the 5'-ethylcarboxamido groups of these latter compounds with methylcarboxamido substituents, since this modification seems to favor the interaction of the adenosine derivatives with the A_3 AdoR. A_3

CHEMISTRY

The synthesis of the new 2-alkynyl-5'-N-methylcarboxamido adenosines (7-9, Scheme~1) was carried out starting from 2-iodoadenosine-4'-ethylester (10), $^{[8]}$ prepared from the commercially available guanosine in eight steps. Reaction of this intermediate with methylamine gave the 2-iodo-5'-N-methylcarboxamidoadenosine (2-IMECA, 11), which was treated with the appropriate terminal alkyne, using a modification of the classical palladium catalyzed cross-coupling reaction to obtain the desired 2-alkynyl-5'-N-methylcarboxamidoadenosines (7-9). $^{[1,8,9]}$

Supported by a grant from the Ministry of Research (COFIN, Grant no. 200061553, 2004) and by the University of Camerino (Fondo di Ricerca di Ateneo).

Address correspondence to G. Cristalli, Dip. Scienze Chimiche, Camerino I-62032, Italy.

1,
$$R = CH_3 - (CH_2)_3 R_1 = CH_2OH$$
2, $R = CH_3 - (CH_2)_3 R_1 = CONHEt$
3, $R = CH_3 - (CH_2)_3 R_1 = CONHEt$
4, $R = CH_3 - (CH_2)_3 R_1 = CONHEt$
6, $R = CH_3 - (CH_2)_3 R_1 = CONHEt$

FIGURE 1 Structures of 2-alkynyl-Ado (1-3) and -NECA (4-6) derivatives reported in Table 1.

BIOLOGICAL RESULTS

The new compounds were evaluated at the human recombinant adenosine receptors, stably transfected into Chinese hamster ovary (CHO) cells, utilizing radioligand binding studies (A₁, A_{2A}, A₃) or adenylyl cyclase activity assay (A_{2B}). Receptor binding affinity was determined using [${}^{3}H$]CCPA (2-chloro-N⁶-cyclopentyladenosine) as radioligand for A₁ receptors, whereas [${}^{3}H$]NECA was used for the A_{2A} and A₃ subtypes (K_i; nM). The results are shown in Table 1. NECA, the alkynyl-adenosines (1–3) and -NECA (4–6) derivatives have been reported as reference compounds.

The relative potencies of these compounds for the A_{2B} subtype were measured by evaluating the receptor-stimulated adenylyl cyclase activity expressed as EC_{50} , nM. Data reported in Table 1 show that the 2-alkynyl Ado derivatives $\mathbf{1}-\mathbf{3}$ possess high affinity at A_1 , A_{2A} , and A_3 AdoRs, but do not activate the A_{2B} subtype. In particular, the 2-phenylethynylAdo, with a K_i A_3 =16 nM and a selectivity of 24 and

$$H_2$$
N H_2 N

SCHEME 1 Synthesis of 2-alkynylMECA derivatives. a) MeNH₂; b) $R-C \equiv CH$, $(Pn_3P)_2PdCl_2$, CuI, Et_3N .

 R^a Cpd R_1^a A_1 A_3 A_1/A_3 A_{2A}/A_3 A_{2A} A_{2B} **NECA** 14 20 2,400 6.2 2 3 1 CH₃(CH₂)₃ CH₂OH 18 5.7 >10,000 4.7 CONHEt 25 4 $CH_3(CH_2)_3$ 60 6.4 6,100 2.4 3 7 $CH_3(CH_2)_3$ CONHMe 711 25 >100,000 1.4 508 18 2 CH₂OH391 363 >100,000 16 23 5 **CONHEt** 560 620 >100,000 6.2 90 100 8 CONHMe 3,920 1,760 >100,000 7.3 241 3 CH₂OH 2 0.67 7.0 2,400 3.3 0.2 6 CONHEt 3.1 1,100 0.42 6 **CONHMe** 2 9 14 3.0 5,030 1.7 8

TABLE 1 Affinity (A_1 , A_{2A} , and A_3) and Potency (A_{2B}) of the AdoR Ligands 1-9

^aSee Figure 1.

23 versus A_i and A_{2A} , respectively, resulted A_3 selective. The presence of an ethylcarboxamido substituent in the 4' position of the three adenosine derivatives led to compounds **4**-**6**, which possessed decreased affinity at A_1 receptor, showed different profile at A_{2A} , and increased their affinity for the A_3 subtype, in comparison with the parent compounds **1**-**3**.

On the other hand, substitution of the 4'-ethylcarboxamide with a methylcarboxamido group resulted in compounds 7-9, which, while maintaining a similar affinity for the A_3 AdoR subtype, showed in general a decrease in A_1 and A_{2A} affinity, resulting more A_3 selective.

Among them, the 2-phenylethynylMECA (8, K_i A_3 =7.3 nM, selectivity A_1 / A_3 =537 and A_{2A} / A_3 =241) resulted in one of the nucleoside derivatives with the highest selectivity for the human A_3 subtype reported so far.

REFERENCES

- Cristalli, G.; Elcuteri, A.; Vittori, S.; Volpini, R.; Lohse, M.J.; Klotz, K.-N. J. Med. Chem. 1992, 35, 2363

 2368.
- Volpini, R.; Costanzi, S.; Lambertucci, C.; Vittori, S.; Cristalli, G. Curr. Pharm. Des. 2002, 3(26), 2285 – 2298.
- 3. Cristalli, G.; Lambertucci, C.; Taffi, S.; Vittori, S.; Volpini, R. Curr. Top. Med. Chem. 2003, 3(4), 387-402.
- Cristalli, G.; Camaioni, E.; Costanzi, S.; Vittori, S.; Volpini, R.; Klotz, K.-N. Drug. Dev. Res. 1998, 45, 176–181.
- Vlpini, R.; Costanzi, S.; Lambertucci, C.; Taffi, S.; Vittori, S.; Klotz, K.-N.; Cristalli, G. J. Med. Chem. 2002, 45, 3271–3279.
- Kim, H.O.; Ji, X.-D.; Siddiqui, S.M.; Olah, M.E.; Stiles, G.; Jacobson, K.A. J. Med. Chem. 1994, 37, 3614–3621.

- 7. Mueller, C. Curr. Top. Med. Chem. 2003, 3(4), 445-462.
- 8. Cristalli, G.; Volpiny, R.; Vittori, S.; Camaioni, E.; Conti, A.; Dionisotti, S.; Zocchi, C.; Ongini, E. J. Med. Chem. 1994, 37, 1720–1726.
- 9. Cristalli, G.; Volpini, R.; Vittori, S.; Camaioni, E.; Monopoli, A.; Conti, A.; Dionisotti, S.; Zocchi, C.; Ongini, E. J. Med. Chem. **1995**, *38*, 1462–1472.
- 10. Klotz, K.N.; Hessling, J.; Hegler, J.; Owman, B.; Kull, B.; Fredholm, B.B.; Lohse, M.J. Arch. Phamacol. 1998, 357, 1–9.